Math 31 — Homework 7

Note: This assignment is optional.

Note: Any problem labeled as “show” or “prove” should be written up as a formal proof, using
complete sentences to convey your ideas.

Basic Ring Theory

The problems on this list all involve basic definitions and examples of rings, along with ring homo-
morphisms. You should be able to do them all after the x-hour on August 13.

1. Let R be an integral domain. If a,b,c € R with a # 0 and ab = ac, show that b = c.

Proof. If ab = ac, then ab — ac = 0, and the left distributive law gives
a(b—c) =0.

Since R is an integral domain and a # 0, we must have b — ¢ = 0. In other words, b = c. O

2. Find the following products of quaternions.
(a) (i+J)(i—J).
(b) (1 —i+25—2k)(1+2i—4j+ 6k).
(c) (2i —3j + 4k)2.
(d) i(ao + ari+ azj + ask) — (ap + a1i + aoj + azk)i.
Solution. (a) We have
(@ +4)(i —j) = i(i = j) + j(i = J)
=i* —ij + ji — j?
=—1-k—k—-(-1)
= —2k.

(b) In this case we have

(1—i42j—2k)(1+ 2 —4j 4 6k) =1+ 2i — 45 + 6k
— i — 2% + 4ij — 6ik
+ 2 + 4ji — 8% + 125k
— 2k — 4ki + 8kj — 12k>
=14i—2j+4k+2+2j +8+4i+ 12
= 23 + 5i + 4k.



(c) If we square this quaternion, we get
(20 — 3j +4k)2 = —4 — 9 — 16 — 6ij — 6ji + Sik + 8ki — 12jk — 12k
= —29.
(d) Finally, we have
i(ap + a1t + agj + ask) — (p + aqi + agj + ask)i = agij — agji + asik — aski
= 2a0k — 2a3j.

3. Let R be a commutative ring with identity. Show that if v € R is a unit, then w is not a
zero divisor. Conclude that any field is necessarily an integral domain. [Note: This is proven in
Corollary 16.3 of Saracino if you’d like to check your answer there.]

Proof. Let a € R be a unit, and suppose that there is a b € R such that ab = 0. Then
atab)=a"t-0=0.

But a~'(ab) = (a'a)b=1-b = b, so we must have b = 0. Therefore, a is not a zero divisor.

4. Let R be a finite integral domain with identity 1 € R. Show that R is actually a field. [Note:
This is Theorem 16.7 in Saracino.]

Proof. We need to show that any nonzero element of R has a multiplicative inverse, i.e., that it is
a unit. Since R is finite, we can list out the elements of R:

R:{O’Lalan?"'aan}

for some n € Z. In problem 1, you proved that if ab = ac for some b,c € R, then b = c¢. Therefore,
the elements
a-0,a-1,aa1,aas,...,aa,

must all be distinct, and since there are n + 2 of them, these must be all the elements of R. The
first is a - 0 = 0, and the second is a -1 = a. Since 1 € R, it must appear somewhere on this list.
That is, there is an i between 1 and n such that aa; = 1. But then a; = o™ !, and a is a unit.
Therefore, R is a field.

5. [Saracino, #16.16] Let R be a ring. An element r € R is a (multiplicative) idempotent if

r2 = r. We say that R is a Boolean ring if every element of R is a multiplicative idempotent. If

R is Boolean, show that

(a) 2r =0 for every r € R (i.e., 7 = —7).

Proof. Let r € R. Then we have

On the other hand,

since R is Boolean. Therefore, r = —r.



(b) R is commutative.

Proof. Let a,b € R, and consider (a + b)?:
(a+b)? =a®+ab+ba+b*=a+ab+ba+b,
since R is Boolean. On the other hand, (a + b)? = a + b, so
a+ab+ba+b=a+b.
Subtracting a and b from both sides, we have
ab+ba =0,

so ab = —ba. But we saw in part (a) that —ba = ba, so it follows that ab = ba. Therefore, R
is commutative.

6. Let R and S be two rings with identity, and let 1z and 1g denote the multiplicative identities
of R and S, respectively. Let ¢ : R — S be a nonzero ring homomorphism. (That is, ¢ does not
map every element of R to 0.)

(a) Show that if p(1g) # 1lg, then ¢(1g) must be a zero divisor in S. Conclude that if S is an

integral domain, then ¢(1r) = 1g.

Proof. If p(1gr) # 1g, then p(1g) — 1g # 0. However, if we multiply this by ¢(1g), we get

©(1r) (p(1r) — 1s) = ¢(1r)¢(1r) — ©(1Rr) - 1s = ¢©(1r) — ¢(1r) = 0.

Therefore, ¢(1g) is a zero divisor. If S is an integral domain, it has no zero divisors, and we
must have p(1r) = 1g in this case.

(b) Prove that if ¢(1g) = 1g and u € R is a unit, then ¢(u) is a unit in S and

plu™) = o)~

Proof. Let u be a unit in R. Then

pu)p(u™) = p(uu™") = p(1g) = 1g.

Similarly, ¢(u=1)e(u) = g, so ¢(u) is a unit with ¢(u)~! = p(u~1).

Ideals and Polynomials

The following questions deal with ideals, quotient rings, and polynomial rings. You should be able
to complete them after class on Monday, August 19.



1. Let R be a ring, and suppose that I and J are ideals in R. Prove that I N J is an ideal in R.

Proof. Since I and J are subgroups of the abelian group (R, +), we already know that I N .J is
an additive subgroup of R. Suppose then that a € INJ and r € R. Then a € I and a € J, so
ra € I and ra € J, since I and J are both ideals. Similarly, ar € I and ar € J, so ra,ar € I N J.
Therefore, I N J is an ideal of R.

2. Let R be a commutative ring. An element a € R is said to be nilpotent if there is a positive
integer n such that a™ = 0. The set

Nil(R) = {a € R : a is nilpotent}

is called the nilradical of R. Prove that the nilradical is an ideal of R. [Hint: You may need to
use the fact that the usual binomial theorem holds in a commutative ring. That is, if a,b € R and

n € Z*, then
(a+b)" Za" kpk.

This should help with checking that Nil(R) is closed under addition.]

Proof. We first show that Nil(R) is closed under addition. If a,b € Nil(R), then there are integers
n and m such that ™ = 0 and ™ = 0. We then claim that (ab)™™ = 0. To see this, we use the
binomial expansion of (a + b)™™

nm

(a + b)nm _ Zanm—kbk‘

k=0

Note that if & > m, then b* = 0, so we really only have

,_A

m—
CL + b Z anm—kbk.
k=0

But for k < m, nm—k >nm—(m—1) = (n—1)m+1>n, so a™ % =0 when k < m. Therefore,
(a+b)" =0, as claimed. Of course if a € Nil(R), then —a is as well, and 0 € Nil(R), so Nil(R) is
an additive subgroup of R.

It remains to show that if @ € Nil(R) and r € R, then ra € Nil(R). Suppose that a” = 0. Then
since R is commutative, we have

(ra)" =r"a" =r"-0=0.
Thus ra is nilpotent, and Nil(R) is an ideal of R.

3. [Saracino, #17.14] Let R be a ring and I an ideal of R.

(a) If R is commutative, show that R/I is commutative.



(b)

Proof. Let R+ a and R+ b be elements of R/I. Then
(R+a)(R+b) =R+ (ab) = R+ (ba) = (R+b)(R+ a),
so R/I is commutative.

If R has an identity, show that R/I also has an identity.

Proof. We claim that R+ 1 is the identity in R/I. To see this, note that if R+a € R/I, then
(R+1)(R4+a)=R+(1-a)=R+a,

and similarly (R+a)(R+1) = R+ a.

4. Determine whether each of the following polynomials is irreducible over the given field.

(a)

3z* + 523 + 50z + 15 over Q.
Solution. This is irreducible by Eisenstein’s criterion: the prime 5 divides every coefficient

except the leading one, and 5% = 25 doesn’t divide the constant term 15, so the polynomial
is irreducible over Q.

x2 + 7 over Q.

Solution. This is also irreducible by Eisenstein. Since 7 divides the constant term but not
the leading coefficient and 72 = 49 does not divide the constant term, it is irreducible over

Q.
22+ 7 over C.

Solution. This polynomial is not irreducible over C. It has roots +iv/7 in C, so it factors as

2+ 7= (z+iV7)(z —iVT).



