
Math 31 – Homework 7

Note: This assignment is optional.

Note: Any problem labeled as “show” or “prove” should be written up as a formal proof, using
complete sentences to convey your ideas.

Basic Ring Theory

The problems on this list all involve basic definitions and examples of rings, along with ring homo-
morphisms. You should be able to do them all after the x-hour on August 13.

1. Let R be an integral domain. If a, b, c ∈ R with a 6= 0 and ab = ac, show that b = c.

Proof. If ab = ac, then ab− ac = 0, and the left distributive law gives

a(b− c) = 0.

Since R is an integral domain and a 6= 0, we must have b− c = 0. In other words, b = c.

2. Find the following products of quaternions.

(a) (i+ j)(i− j).

(b) (1− i+ 2j − 2k)(1 + 2i− 4j + 6k).

(c) (2i− 3j + 4k)2.

(d) i(α0 + α1i+ α2j + α3k)− (α0 + α1i+ α2j + α3k)i.

Solution. (a) We have

(i+ j)(i− j) = i(i− j) + j(i− j)
= i2 − ij + ji− j2

= −1− k − k − (−1)

= −2k.

(b) In this case we have

(1− i+ 2j − 2k)(1 + 2i− 4j + 6k) = 1 + 2i− 4j + 6k

− i− 2i2 + 4ij − 6ik

+ 2j + 4ji− 8j2 + 12jk

− 2k − 4ki+ 8kj − 12k2

= 1 + i− 2j + 4k + 2 + 2j + 8 + 4i+ 12

= 23 + 5i+ 4k.
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(c) If we square this quaternion, we get

(2i− 3j + 4k)2 = −4− 9− 16− 6ij − 6ji+ 8ik + 8ki− 12jk − 12kj

= −29.

(d) Finally, we have

i(α0 + α1i+ α2j + α3k)− (α0 + α1i+ α2j + α3k)i = α2ij − α2ji+ α3ik − α3ki

= 2α2k − 2α3j.

3. Let R be a commutative ring with identity. Show that if u ∈ R is a unit, then u is not a
zero divisor. Conclude that any field is necessarily an integral domain. [Note: This is proven in
Corollary 16.3 of Saracino if you’d like to check your answer there.]

Proof. Let a ∈ R be a unit, and suppose that there is a b ∈ R such that ab = 0. Then

a−1(ab) = a−1 · 0 = 0.

But a−1(ab) = (a−1a)b = 1 · b = b, so we must have b = 0. Therefore, a is not a zero divisor.

4. Let R be a finite integral domain with identity 1 ∈ R. Show that R is actually a field. [Note:
This is Theorem 16.7 in Saracino.]

Proof. We need to show that any nonzero element of R has a multiplicative inverse, i.e., that it is
a unit. Since R is finite, we can list out the elements of R:

R = {0, 1, a1, a2, . . . , an}

for some n ∈ Z. In problem 1, you proved that if ab = ac for some b, c ∈ R, then b = c. Therefore,
the elements

a · 0, a · 1, aa1, aa2, . . . , aan
must all be distinct, and since there are n + 2 of them, these must be all the elements of R. The
first is a · 0 = 0, and the second is a · 1 = a. Since 1 ∈ R, it must appear somewhere on this list.
That is, there is an i between 1 and n such that aai = 1. But then ai = a−1, and a is a unit.
Therefore, R is a field.

5. [Saracino, #16.16] Let R be a ring. An element r ∈ R is a (multiplicative) idempotent if
r2 = r. We say that R is a Boolean ring if every element of R is a multiplicative idempotent. If
R is Boolean, show that

(a) 2r = 0 for every r ∈ R (i.e., r = −r).

Proof. Let r ∈ R. Then we have

(−r)2 = (−r)(−r) = r · r = r2 = r.

On the other hand,
(−r)2 = −r

since R is Boolean. Therefore, r = −r.
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(b) R is commutative.

Proof. Let a, b ∈ R, and consider (a+ b)2:

(a+ b)2 = a2 + ab+ ba+ b2 = a+ ab+ ba+ b,

since R is Boolean. On the other hand, (a+ b)2 = a+ b, so

a+ ab+ ba+ b = a+ b.

Subtracting a and b from both sides, we have

ab+ ba = 0,

so ab = −ba. But we saw in part (a) that −ba = ba, so it follows that ab = ba. Therefore, R
is commutative.

6. Let R and S be two rings with identity, and let 1R and 1S denote the multiplicative identities
of R and S, respectively. Let ϕ : R → S be a nonzero ring homomorphism. (That is, ϕ does not
map every element of R to 0.)

(a) Show that if ϕ(1R) 6= 1S , then ϕ(1R) must be a zero divisor in S. Conclude that if S is an
integral domain, then ϕ(1R) = 1S .

Proof. If ϕ(1R) 6= 1S , then ϕ(1R)− 1S 6= 0. However, if we multiply this by ϕ(1R), we get

ϕ(1R) (ϕ(1R)− 1S) = ϕ(1R)ϕ(1R)− ϕ(1R) · 1S = ϕ(1R)− ϕ(1R) = 0.

Therefore, ϕ(1R) is a zero divisor. If S is an integral domain, it has no zero divisors, and we
must have ϕ(1R) = 1S in this case.

(b) Prove that if ϕ(1R) = 1S and u ∈ R is a unit, then ϕ(u) is a unit in S and

ϕ(u−1) = ϕ(u)−1.

Proof. Let u be a unit in R. Then

ϕ(u)ϕ(u−1) = ϕ(uu−1) = ϕ(1R) = 1S .

Similarly, ϕ(u−1)ϕ(u) = 1S , so ϕ(u) is a unit with ϕ(u)−1 = ϕ(u−1).

Ideals and Polynomials

The following questions deal with ideals, quotient rings, and polynomial rings. You should be able
to complete them after class on Monday, August 19.
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1. Let R be a ring, and suppose that I and J are ideals in R. Prove that I ∩ J is an ideal in R.

Proof. Since I and J are subgroups of the abelian group 〈R,+〉, we already know that I ∩ J is
an additive subgroup of R. Suppose then that a ∈ I ∩ J and r ∈ R. Then a ∈ I and a ∈ J , so
ra ∈ I and ra ∈ J , since I and J are both ideals. Similarly, ar ∈ I and ar ∈ J , so ra, ar ∈ I ∩ J .
Therefore, I ∩ J is an ideal of R.

2. Let R be a commutative ring. An element a ∈ R is said to be nilpotent if there is a positive
integer n such that an = 0. The set

Nil(R) = {a ∈ R : a is nilpotent}

is called the nilradical of R. Prove that the nilradical is an ideal of R. [Hint: You may need to
use the fact that the usual binomial theorem holds in a commutative ring. That is, if a, b ∈ R and
n ∈ Z+, then

(a+ b)n =

n∑
k=0

an−kbk.

This should help with checking that Nil(R) is closed under addition.]

Proof. We first show that Nil(R) is closed under addition. If a, b ∈ Nil(R), then there are integers
n and m such that an = 0 and bm = 0. We then claim that (ab)nm = 0. To see this, we use the
binomial expansion of (a+ b)nm:

(a+ b)nm =
nm∑
k=0

anm−kbk.

Note that if k ≥ m, then bk = 0, so we really only have

(a+ b)nm =
m−1∑
k=0

anm−kbk.

But for k < m, nm−k ≥ nm− (m− 1) = (n− 1)m+ 1 ≥ n, so anm−k = 0 when k < m. Therefore,
(a+ b)nm = 0, as claimed. Of course if a ∈ Nil(R), then −a is as well, and 0 ∈ Nil(R), so Nil(R) is
an additive subgroup of R.

It remains to show that if a ∈ Nil(R) and r ∈ R, then ra ∈ Nil(R). Suppose that an = 0. Then
since R is commutative, we have

(ra)n = rnan = rn · 0 = 0.

Thus ra is nilpotent, and Nil(R) is an ideal of R.

3. [Saracino, #17.14] Let R be a ring and I an ideal of R.

(a) If R is commutative, show that R/I is commutative.
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Proof. Let R+ a and R+ b be elements of R/I. Then

(R+ a)(R+ b) = R+ (ab) = R+ (ba) = (R+ b)(R+ a),

so R/I is commutative.

(b) If R has an identity, show that R/I also has an identity.

Proof. We claim that R+ 1 is the identity in R/I. To see this, note that if R+a ∈ R/I, then

(R+ 1)(R+ a) = R+ (1 · a) = R+ a,

and similarly (R+ a)(R+ 1) = R+ a.

4. Determine whether each of the following polynomials is irreducible over the given field.

(a) 3x4 + 5x3 + 50x+ 15 over Q.

Solution. This is irreducible by Eisenstein’s criterion: the prime 5 divides every coefficient
except the leading one, and 52 = 25 doesn’t divide the constant term 15, so the polynomial
is irreducible over Q.

(b) x2 + 7 over Q.

Solution. This is also irreducible by Eisenstein. Since 7 divides the constant term but not
the leading coefficient and 72 = 49 does not divide the constant term, it is irreducible over
Q.

(c) x2 + 7 over C.

Solution. This polynomial is not irreducible over C. It has roots ±i
√

7 in C, so it factors as

x2 + 7 = (x+ i
√

7)(x− i
√

7).
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